
International Journal of Theoretical Physics, Vol. 36, No. 3, 1997 

Effects of a Small Deviation from Fermi Statistics 

C. W o l f  1 

Received February 16, 1996 

By considering a generalized statistics with occupation numbers between 
Bose-Einstein and Fermi-Dirac statistics we study the resultant distribution when 
the states differ by a small factor from a Fermi-Dirac distribution. Both the 
Fermi energy and any level crossing phenomena are sensitive to such statistics; 
in particular, the electrical conductivity and the free electron heat capacity of 
fermions at low temperatures receive corrections due to alterations of 
Fermi-Dirac statistics. 

1. I N T R O D U C T I O N  

It is fair to say that of all the principles of  quantum theory, the exclusion 
principle and the existence of Bose-Einstein (BE) and Fermi-Dirac (FD) 
statistics represent the most mysterious and ad hoc fundamental axioms of  
the theory (Lamoreaux, 1992; Dyson, 1967). Yet so much depends on them; 
the existence of  atomic stability, nuclear structure, the hadron spectrum, and 
the very existence of the color degree of  freedom represent some of  the 
consequences of  FD statistics (Okun, 1989). One might wonder whether the 
exclusion principle is a consequence of an underlying symmetry of space- 
time or is a result of  topological considerations in spin space (Geroch and 
Horowitz, 1979). This latter idea emerges from the fact that fermions feel 
each other's presence even without an interaction through a potential. In fact, 
until the study on the (2 + 1)-dimensional quantized Hall effect (Girven and 
Prange, 1987) along with the anomalous statistics generated by (2 + 1)- 
dimensional anayons (Luscher, 1989; Semmenoff and Sodamo, 1989) there 
was virtually no good reason to doubt the FD and BE statistics. Recently, 
Wu (1994), motivated by the work of Haldane (1991), discussed a generalized 
statistics which interpolates between BE and FD statistics. In a previous 
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paper we used the entropy for such a generalized statistics to derive a formula 
for the distribution function for particles obeying such statistics (Wolf, 1995). 
When we consider a small deviation from BE statistics we can discuss the 
spectral distribution of anomalous photons obeying such a distribution. The 
spectral distribution differs from the Rayleigh-Jeans law at low frequencies, 
which would effect the cosmic microwave background if such anomalous 
photons are in equilibrium with normal photons. In the present paper we 
study the case where there is a small deviation from FD statistics. After we 
derive the distribution law we point out that anomalies would show up in 
the Fermi energy and transport phenomena such as electrical conductivity at 
extremely low temperatures. We also calculate anomalous contributions to 
the free electron specific heat at low temperatures. 

2. S M A L L  DEVIATIONS F R O M  FD STATISTICS 

We begin by giving a brief derivation of the formula for the distribution 
of particles in a system admitting anomalous statistics; according to Wu 
(1994), we write the number of ways of realizing Ni particles in gg cells as 

[gi + (Ni - 1)(1 - or)]! 
w~ = (2.1) 

Ni! (gi  - ~ - -  (1 -- or)]! 

Here for a = 1 (Fermi-Dirac case) we have 

gi! 
W , -  

Ni! (gi - N~)! 

for a = 0 (Bose-Einstein case) we have 

(g~ + N i  - 1)! 
W~= 

N~! ( g ~ -  1)! 

For 0 < et < 1 we have for the total entropy 

(gi  ..I- (Ni - 1)(1 - ot))[ 
S = k lne ~I/Ni! (gi - - -  -o[~[i : -(f "----~[ (2.2) 

Taking the natural log of  equation (2.2) and varying with respect to Ni,  we 
have for equation (2.2) upon summing (here we maximize S) 

( ( 1 -  c0 l n e ( g i + ( N i -  1 ) ( 1 -  a))+__ (~1- ct) - (1 - ot)~dN i 
~/ - lne Ni + 1 - 1 + ot lne(gi otNi OL)) + Ot -- Or) 

0 

(2.3) 
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In equation (2.3) we set Ni - 1 ~- Ni and neglect (1 - or) in comparison to 
gi - otNi; this gives 

~i(lne(giq-. Ni(l-~176 (2.4) 

W e  next employ the constraints for the number of particles and total energy 

~N i = 0 ( 2 . 5 )  

EiBN i : 0 ( 2 . 6 )  

For the Lagrange multipliers we have W/a" and -l /a" for equations (2.5) and 
(2.6), respectively. This gives in combination with equation (2.4) 

+----  dNi = O 
�9 N i  a- 

Setting the coefficient of dNi equal to 0 gives 

(gi q" (1 - -  ot)Ni)l-a(gi - ctNi) a 
Ni 

= e <~i- ~)/" (2.7) 

Here Ix is the chemical potential, a- = kBT is the normalized temperature, e i 
is the energy of level i, and Ni is the occupation of level i. 

In equation (2.7) we let ot = 1 - el (el is a small parameter). Equation 
(2.7) becomes after taking the natural log of both sides 

~.l In e g,(1 + ~"Nil+(1-El) l n e ( g i - N i ) ( l + g i  ] gi~'lNi- Ni]l-lneNi=~'i-P'a- 

Expanding the above equation, we have, upon keeping terms to first order 
in el, 

el In, gi + (1 - el) ln,(gi - Ni) + 
etNi e i -  I~ 

In, Ni - 
(gi  - Ni) a- 

o r  

gi -- Ni gi - Ni e lN i  ei -- I1, 
ln, - -  - -  el ln, - -  - -  + - -  ( 2 . 8 )  

Ni gi gi - Ni a- 

Or 

gi - Ni _ e(~,_~)l~[l e.lNi 

N, \ S , -  N,/ 
(2.9) 
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Here we approximate 

( g i - N i l " ~ l  (~1 small) 
gi / 

Solving equation (2.9) for Ni to first order in r gives 

gi(l + El) gie(~i-P4/'r~. 1 
Ni --~ e(~_~)/~ + 1 (e (~-"m + 1) 2 

For "r ---> 0, E < I~, 

Thus, if 

we have 

Ni ~-- gi(1 + E,) 

8xtp2dp 
gi - h-------T~ V 

8 ~  
N =  (1 + e l ) - ~ V  

where V is the spatial volume and P u  is the maximum momentum. Thus 

and 

for the Fermi energy. 

/ 3Nh 3 

1 ~m((1  3Nh3 ~ 2/3 
~-F ~ ~l)8'rrV] 

(2.10) 

[2(1 + r 3 2r (~-~)/" ] 1 
fo = L e(~----~: ~ i (1 + e(~-r /~3 

1 2 where r = -~m(Vx + V 2 + V2z). 

(2.11) 

Thus the Fermi energy is diminished for ~t 4= 0. 
Equation (2.10) in velocity space reads for unit spatial volume and no 

potential (for spin up and spin down) 

[ 2(1 + E1)m 3 2%m3e (~-~)1" ] dVxdVydV z 
dN = L(e<-- V~;T 1-) (~ "~ ~ 2 J  h 3 

[El = E(Vx, Vy, Vz) ], or for the distribution function 
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For the Boltzmann equation in an x-component electric field we have 

(de 0f0 
- - -  % ( 2 . 1 2 )  f= fo  m aV~ 

(% is the electric field) to first order in "rr (relaxation time). The electric 
current is 

j x = f ~  f_ f_ ' %e 2 . Ofo TrV x - -  dVx dV r dVz 
~ m OVx 

(2.13) 

Since f0 depends on ~l as in equation (2.11), the electric current would depend 
on ~l through equation (2.13). 

. CORRECTIONS TO THE ELECTRICAL CONDUCTIVITY 
AND FREE ELECTRON SPECIFIC HEAT OF ELECTRONS AT 
LOW TEMPERATURE DUE TO ANOMALOUS STATISTICS 

I f  w e  substitute equation ( 2 . 1 1 )  into equation ( 2 . 1 3 ) ,  w e  find 

Jx = - 2 e  I" r 

For low % eF = I~ > >  "r ( Ki t t e l ,  1 9 5 8 )  

(et~'~f +/~l)2)dVx dVy dVz (3.1) 

= - 8 ( e  - eF )  

(eF ~ Ix = Fermi energy). 
Equation (3.1) becomes 

Jx= 2e2% %- V (1 + e l ) 8 ( e -  eF) 

_ 2ele0~-~F)/'~i(e -- eF) + elS(e -- eF)] dV~ dVy dV z 
e (r q- 1 

Evaluating equation (3.2) gives (Kittel, 1958) 

Jx=ee'r '~ '~ 3 ) m - ~  ( 1 - e , )  

(3.2) 

(3.3) 
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where 

,( ,-,' : 
�9 F = Fm (l + �9 

Combining equation (3.3) and the above modified expression for �9 gives 

3 m 5/2 (1 - 2 �9  (3.4) 

Jx = J0x( 1 - 2�9 

Here �9 is the Fermi energy without anomalous statistics. 
We now calculate the corrections to the free electron specific heat induced 

by the anomalous statistics. Following the development of Kittel (1969), we 
have for the energy of a free electron gas above the value at T = 0 (M is 
the mass of the electron, L 3 is the volume) 

If' [ 2M\ 3r2 [ 1 +  �9 r e~'-')/" ~ L3 (_..~_j �9 de 
AUfT) = \(e (':'~-r ; 1) (1 + e('-'F)/02 ] 

I: ~ - ~ (1 + el) ~ �9 de (3.5) 

Here 

/ '2M~ 3/2 L3 t~-  ) Cnde 
2 ,tr 2 

is the number of electron states (spin up and spin down) between �9 and �9 + 
de in the spatial volume V = L 3. 

In equation (3.5) 

1 + � 9  �9 e(r162 
f ( � 9  --  e (e-eF)/T + 1 (e(~-~F)I T + 1) 2 [�9 ~ p,(0)] (3 .6)  

Upon using the relation for the equality of the number of particles at "r = 0 
and 'r = 'r, 

(?, (~ �9 F �9149 de + �9 f(�9149 de 
F 

= �9 (1 + � 9149  (3.7) 

[D(�9 is the density of states in e space] we may rewrite equation (3.5) as 
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AU = ( ,  - ~F)f(,)D(e) de + d ,  ( ,  - ,F)[1 + "1 (3.8) 
~F 

- f ( r 1 6 2  

For the specific heat of the free electron gas we have 

f; d(AW) _ (, - ,F) dr(,) D(,) d~ 
c ~ -  dr  - ~ -  

Io df(,) . ----- D(,v) (" - r 7 a ,  (3.9) 

Writing ( ,  - ,v)/kT = x and approximating the integral in equation 
(3.9) from - ~  to + ~  in x, we have, upon carrying out the derivatives in 
equation (3.6), 

where 

I~= xZe" dx 
C. = k~rD(,F) (1 + 2,1) (~-u ~2 

F Ye~l 
- 2 ,1  j__| (e  ~ + l ) 3 j  

3i2 V {2M'~ uz 

(3.10) 

after using the corrected value of "F (eFO is the Fermi energy in the absence 
of  anomalous statistics). 

Equation (3.10) becomes 

Cv = ~rD( ,Fo)  1 - 3 ] L T  + 2,1 (e ~ + 1) 3 ax 

~-- kBTD(eFo)[~-~ + el(2Ko - ~---9 )] (3.11) 

where K0 --~ 2/27. We thus have a negative correction term to the specific heat 
proportionatal to el. In equations (3.4) and (3.11) we see that the anomalous 
statistics decreases the free electron specific heat and decreases the free 
electron electric current. The problem is to separate out corrections due to 
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variations of the relaxation time with energy in the electric current from 
anomalous statistics corrections and also separate out electron phonon correc- 
tions to C~ and spin fluctuation corrections to C~ from anomalous corrections 
to the specific heat. Also, corrections due to the fact that the number of free 
electrons may not be equal to the number of ions would make an estimate 
of the anomalous parameter a very delicate matter. 

4. EXPERIMENTAL PROBES OF ANOMALOUS STATISTICS 

From equations (3.4) and (3.11) we have seen that the free electron 
current and the specific heat are diminished due to the anomalous statistics 
in proportion to el. The essential reason for this is that more electrons can 
be put in lower energy levels, thus producing a diminished Fermi energy and 
a diminished free electron total energy and free electron current. Since the 
relaxation time % in equation (3.4) can be dependent on the energy, it would 
be difficult to separate out corrections due to the energy-dependent relaxation 
time from corrections due to anomalous statistics. Also, for the specific heat 
of metals at low temperatures the uncertainty in the number of free electrons 
as mentioned above would lead to uncertainties in the specific heat that wouM 
compete with corrections due to anomalous statistics. To set limits on el, 
however, we may note that certain elements have a lower experimental value 
of the linear term in the free electron specific heat than the theoretical value. 
For instance, for BE (Ashcroft and Mermin, 1976), 

cal 
(COrn = 1.2 • 10-4T 

tool K 

cal 
(Cv)EX = 0.5 • 10-4T 

mol K 

If we attribute 10% of the discrepancy to anomalous states from equation 
(3.11), we have 

lo 4, 1(9 ) = (0.7 X 10-4)(10 -1) 

el --- 0.2 

for the anomalous parameter. For other metals the experimental values are 
larger than those predicted by equation (3.10). The problem is that for most 
metals and alloys electron-phonon contributions to Cv and spin fluctuation 
contributions to Cv (Wire et al., 1983) at low T are of the same order of 
magnitude as or greater than the free electron contribution, thus making an 
estimate of el difficult. If  we turn to superconductivity to try to establish 
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limits in el, we find that the critical temperature, the energy gap, the critical 
field (to destroy superconductivity), and the ratio of the specific heat of the 
superconducting to normal metal at the critical temperature may be sensitive 
to anomalous electron statistics (Phillips, 1959). However, all these quantities 
when measured experimentally are' within 10% of the theoretical predictions 
(Roberts, 1964), thus making it difficult to set limits on el, the anomalous 
parameter. Also in the BCS theory (Bardeen et al., 1957) the neglect of the 
band structure and the estimation of an effective potential introduce differ- 
ences between the experimental and theoretical predictions of the critical 
temperature, energy gap, and other characteristic features of the superconduct- 
ing state. The best way to put limits on the anomalous parameter ~t is to 
pick a specific metal where the electron-phonon, and spin-fluctuation, and 
other corrections are well known and then make accurate measurements on 
the specific heat to ascertain limits on el- 

5. CONCLUSION 

The above discussion of anomalous fermion statistics has suggested that 
both the free electron current and free electron specific heat are sensitive to 
anomalous statistics. The difficulty in setting limits on e stems from the 
uncertainty in the relaxation time (for the free electron current) and the 
electron phonon and spin fluctuation contributions to Cv (for the free electron 
specific heat). However, the issues raised in this paper concerning the exis- 
tence of anomalous statistics suggest experimental "windows" through which 
such anomalies might be observed. This is the spirit of this investigation. 
Certainly the discovery of anomalous statistics for fermions would have 
far-ranging consequences in both condensed matter physics and elementary 
particle physics. 
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